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EFFECTS ARISING FROM CHARGED PARTICLE
OVERCOMING OF THE LIGHT VELOCITY BARRIER

G.N.Afanasiev, S.M.Eliseev, Yu.P.Stepanovsky*

The effects arising from accelerated and decelerated motion of the charged point particle
inside the medium are studied. It is shown explicitly that in addition to the bremsstrahlung and
Cherenkov shock wave, the electromagnetic shock wave arising from the charge overcoming
the light velocity in the medium should be observed. This shock wave has the same singularity
as the Cherenkov one and, therefore, it is more singular than the bremsstrahlung shock wave.
The space-time regions where these shock waves exist and conditions under which they appear
are determined.

The investigation has been performed at the Bogoliubov Laboratory of Theoretical Physics,
JINR.

DddexTh], BO3HHKAIOMME NPH NPOXOXKACHHH
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ABHXCHHH 3apAXeHHON YacTHUE! B cpene. [TokasaHo, 4To Hapsay ¢ yaapHO# BOJHOM, CBA3aHHOM
C HaY&IOM W/IH OKOHYAHHEM IBHKEHHS, H YePEHKOBCKOH YRapHOit BOJIHOI CYIMECTBYET yRapHas
BO/IHA, BO3HHKAIOMIad B TOT MOMEHT, KOTIa CKOPOCTh 4aCTHIUB COBMTAJaeT CO CKOPOCTHIC CBETa
B cpefe. DTa ylapHad BOHA 06/agaeT CHHIYAPHOCTBIO TOH X MOLIHOCTH, YTO H YePEHKOB-
CKad BonHa. HafineHbt npocTpaHCTBEHHO-BpEMEHHBIE OGNACTH H YCJIOBHS, NP KOTOPHIX 3Ta
ydapHas BOTHa HOMXHa HaGmogaTscs.

Pa6ora seinannena B JlaGoparopuu Teopetnyeckoil pusuxu um.H.H.Boromo6osa OUSH.

1. Introduction

Although the Vavilov-Cherenkov effect is a well established phenomenon widely used
in physics and technology [1], many its aspects remain uninvestigated up to now. In parti-
cular, it is not clear how a transition from the sublight velocity regime to the superlight one
occurs. Some time ago [2,3] it was suggested that alongside with the usual Cherenkov and
bremsstrahlung shock waves, the shock wave associated with a charged particle overcoming
the light velocity barrier should exist. The consideration presented there was pure
qualitative without any formulae and numerical results. It was grounded on the analogy
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with phenomena occurring in acoustics and hydrodynamics. It seems to us that this analogy
is not complete. In fact, the electromagnetic waves are pure transversal, while acoustic and
hydrodynamic waves contain longitudinal components. Further, the analogy itself cannot be
considered as a final proof. This fact and experimental ambiguity to distinguish the Cheren-
kov radiation from the bremsstrahlung one [4] make us consider effects arising from the
charged particle overcoming the light velocity barrier in the framework of the completely
solvable model. To be precise, we consider the straight-line motion of the point charge with
a constant acceleration and evaluate the arising electromagnetic field (EMF). In accordance
with Refs.2,3 we confirm the existence of the shock wave arising at the moment when
charged particle overcomes the light velocity (inside the medium) barrier. This wave has
essentially the same singularity as the Cherenkov shock wave. It is much stronger than the
singularity of the bremsstrahlung shock wave. Previously, the accelerated motion of the
point charge in a.vacuum was considered by Schott [5]. Yet, his qualitative consideration
was pure geometrical, not allowing the numerical investigations.

2. Statement of the Physical Problem

Let a charged particle move inside the medium with polarizabilities € and p along the
given trajectory E(#). Then, its electromagnetic field (EMF) at the observation point (p, z) is
given by the Lienard—Wiechert potentials

\ A .
¢(r,:)=§2ﬁ}T, A =%Y pr. ava+Fo-o @

Here

o R=lr-E0)| -ve -t /e,

t=1
i

o (2)

and c,_ is the light velocity inside the medium (c, = ¢ /Nep). Summation in (2.1) is perfor-

med over all physical roots of the equation
et =)= lr-genl. 2:2)

To preserve the causality, the time of radiation ¢’ should be smaller than the observation
time 7. Obviously, ¢’ depends on the coordinates r, ¢ of the point P at which the EMF is
observed. With the account of (2.2) one gets for Ri

R =c(t—t)-v(r-Et)/c, (2.3)

Consider the motion of the charged point-like particle moving inside the medium with a
constant accelaration along the Z axis:

E=ar’. (2.4)

The retarded times ¢’ satisfy the following equation

ct-t)=p" + @-a'Hh/2 2.5)
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It is convenient to introduce the dimensionless variables

7=at/cn, Z=az/c§, §=ap/c'21. (2.6)
Then,
r=1"=[p?+ G- 1HY/2 @7
In order not to overload the exposition, we drop the tilda signs:
t—t"=[p?+(z-t2H/2 (2.8)
For the treated case of one-dimensional motion the denominators R, are given by:
5 .
R=->1 =(t—1)-2(~t> 2.9)
=T n=U-n)-2@-1)) Q.

Eq.(2.8) can be reduced to the following equation of the fourth degree
t’4+pt'2+qt'+R=O. (2.10)

Here p=~2(z+1/2),g=2t, R=1r* -2,

We consider the following two problems:

1. A charged particle rests at the origin up to a moment ¢ = 0. After that it is uniformly
accelerated in the positive direction of the Z axis. In this case only positive retarded times
t’ have a physical meaning.

IL. A charged particle decelerates uniformly moving from z = o to the origin. After the
moment ¢ = 0 it rests there. Only negative retarded times are physical in this case.

It is our aim to investigate space-time distribution of the EMF arising from such par-
ticle motions.

3. Particular Case

Before going to the numerical calculations it is instructive to consider a simple case
corresponding to the observation point lying on the Z axis (p = 0). In this case the roots of
Eq.(2.10) are given by

tL=1-1/2, t,=1,+1/2, ty=-1,+1/2, ty=-1,-1/2,

tl=\fz+t+1/4, 1:2=Vz—t+1/4. a3.1n

In what follows we need also the values of denominators R; entering into the definition of
electromagnetic potentials @, A:

r =21:1(t+ 1/2—1:1), r2=21:2(—t+ 1/2+12),

ry= 2‘:2(t -1/2+ 'cz), r,=- 211(t +1/2+ 7). 3.2)
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Fig.1. The space-time distribution of the retarded
solutions for the particle in accelerated motion and
the observation point lying on the Z axis. Numbers
1,...,3 mean the retarded solutions f,,...

Accelerated motion

For the first problem (uniform acce-
leration of the charged particle from the
state of rest) the physical retarded times
are (Fig.1):
)1,
This solution exists in the space-time

region—t<z<t2.

11) Ly

This solution exists in the t>1/2,

t— 1/4<z<t2region.

iii) Ly

This solution exists in the regions r< 1/2,

t?<z<tandt> 1/2,t-1/4<z<t.
Let the observer be placed at a parti-

cular point of the Z axis. We clarify now

what he will see at different moments of

time. It is convenient to relate the current

time ¢t not to the retarded time 1, but to

the particle position z_at that moment of
time (z, =1 7).

Consider the particular point P lying
on the negative Z semi-axis (Fig.2). Up to

the moment ¢ = — z the observer sees the field of the charge which rests at the origin. At
the moment t = — z the shock wave arising from the beginning of the particle motion arrives
at P. At later times the radiation arrives from the retarded particle positions z, lying on the

right of P.

Let the observation point P lie on the positive Z semi-axis in the interval 0 < z < 1 /4
(Fig.3). Up to a moment r = 7 the observer in P sees the electrostatic field of the charge

5.0 0.48 r
a5t z=0.16 2,
~ 0.32
3.0 N
0.16
1.5 Z3
0.0 - - - 0.00 . .
0 2 4 ¢ 6 8 10 0.00 0.25 0.50 0.75 1.00

Figs.2,3. The retarded positions of the radiating uniformly accelerated charge as function of time for
the observation point lying on the motion axis at z = - 2 (Fig.2) and z = 0.16 (Fig.3)
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which rests at the origin. At the moment ¢ = z the bremsstrahlung shock wave from the
origin reaches P. In the time interval z < ¢ < V¢ the retarded solution is t, which describes

the radiation from the particle retarded positions lying in the interval 0 < 2 < z. At the
moment ¢ = Vz the charged particle reaches the observation point P. At that point R, and
R, vanish and the electromagnetic potentials are infinite. For time ¢ > Vz the observer

detects the radiation from the retarded positions of the particle lying on the right of P and
corresponding to L.

Let the observation point lie in the interval 1/4 <z < 1 (Fig.4). Up to a moment
t=2z the observer sees the field of the charge at rest. At the moment =z the
bremsstrahlung shock wave originating from the beginning of the charge motion reaches
P. In the time interval z <t < \’% the observer sees the radiation from the particle retarded

positions z, in the interval 0 < z, <(1- ‘/2_)2. At the moment t = V7 the charged particle (or

Cherenkov shock wave) reaches the observation point. Again, electromagnetic potentials are
infinite at this point. After that (Vz < f < z + 1/4) the observer in P detects the radiation
from three retarded positions of the particle. Two of them (z, and Z5) lie on the left of the

observation point P and on the opposite sides of the point z,=1/4 at which the particle

velocity is equal to the light velocity in the medium. As time goes, these retarded radiation
positions approach Z,. At the moment ¢ = z + 1 /4 they fuse at the point z=1 /4 where the

particle velocity equals ¢, It turns out (see (3.2)) that at this point R, and R, vanish while
the electromagnetic potentials take infinite values. The disappearance of the t, and ¢, solu-

tions and the infinite values of electromagnetic potentials suggest that the observation point
is reached by the shock wave originating from the point z,=1/4, where the particle velo-

city is equal to ¢, The third of the mentioned solutions (¢,) describes the radiation from the

1.00— T - ] 2.0 - y —
z=0.64 ] z=1.44
] Z,
0.75¢ 1.5¢
N N
0.50¢t 1.0t
Zy
025 R : 0.5 L -
‘25 .................................. 2.3..:
0.00 = ool et T
0.64 0.80 t 098 1.0 1.5 ¢ 20

Figs.4,5. Same as Fig.2, but for z = 0.64 (Fig.4) and for z = 1.44 (Fig.5)



18 Afanasiev G.N. et al. Overcoming of the Light Velocity

particle positions lying on the right of the observation point. For t >z + 1/4 only this
solution contributes to the observation point.

Let the observation point P lie in the region z > 1 (Fig.5). Up to a moment ¢ = Vz the
observer sees the electrostatic field of the charge at rest. At the moment ¢ = Vz the charged
particle (with the Mach cone accompanying it) arrives at P. The electromagnetic potentials
are infinite at this moment. In the time interval Yz < t < z the observer detects the electro-
static field of the charge at rest and the radiation from two points lying on the left (z,) and

the right (z) of P. At the moment r = z the bremsstrahlung shock wave from the origin
reaches P. In the time interval z <t < z + 1 /4 there are three retarded solutions (tl, 1y t3)
which contribute to P. At the moment ¢t = z + 1 /4 the retarded solutions L and 1y annihilate
each other at the point z, = | /4 where the particle velocity is equal to cp This as well as
infinite values of the electromagnetic potentials imply the existence of the shock wave origina-
ting from z, = 1 /4 point. For t > z+ 1/4 only the radiation from 1 solution reaches P.

Decelerated motion
In the second case (uniform deceleration of the charge up to a moment ¢ = 0 after
which it rests at the origin) the allowable retarded solutions are (Fig.6):
i)t
This solution exists in the regions r<—-1/2, 2> t2and t > - 1/2,z>-t-1/4.
ii) t,.
3

This solution exists in the regions t < 0, z > t2and t> 0,z>1

i) 7,
55 ' ____ This solution is defined in the regions
Tt 1-1/2<1t<0, —t»l/4<z<t2 and
| J1>0,-t-1/4<z<~1.

2.0 r 4 ’ 3 4 ’ 3 Let the observer be placed on the nega-
5 [ " « ] tive Z semi-axis (Fig.7). Up to a moment
1. b\ e 1 t=-2z —1/4 he does not obtain any infor-
. 1 mation concerning the particle motion. At
1.0 e ] the moment t = — 7z — 1 /4 the shock wave
N \\\."-, { originating from the particle overcoming
0.5t /\O 4 1 the light velocity barrier (at z,=1/4,
0.0 r % 14=- 1/2) reaches the observation point P
Tt 1 (the electromagnetic potentials are infinite
[ 4_ ] at this point). In the time interval
-0.5 i —7-1/4 <t < - z the observer detects the
[ ] radiation from retarded charge positions (z,

=1 0 b N Lk ] )
10 0.0 £+ 1.0 20 and z,) lying on the left and right of z,. At

Fig.6. The space-time distribution of the retarded
solutions for the particle in decelerated motion and
the observation point lying on the Z axis

the moment ¢ = — z the observer detects the
shock wave arising from the termination of
the particle motion. For r > — z the observer
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Figs.7-9. The retarded positions of the radiating uniformly decelerated charge as functions of
time for the observation points lying on the motion axis at z = — 0.5 (Fig.7), z = 1/8 (Fig.8),
and z = 1 (Fig.9)

sees the electrostatic field of the charge which rests at the origin and the radiation from the
remote retarded positions of the charge.
Let the observation point lie within the interval 0 < z < 1 /4 (Fig.8). At the moment
==z —1/4 the shock wave originating from the particle overcoming the light velocity
barrier (at z = 7)) reaches the observer. Again, the electromagnetic potentials are infinite at

this moment. In the time interval -z — 1 /4 <t < —z the radiations from two retarded
positions of the charge (z4 and z,) arrive at P. They lie on different sides of z,, on the right
of the observation point z. As time goes, one of the radiating points (z,) approaches the
origin, while the other (z ,) moves away from z. At the moment ¢ = — Vz the electromagnetic
potentials become infinite as  the particle  arrives at P. At this moment the t, solution
disappears, but, instead, ty arises. In the time interval — V7 <t < z the observer sees the

radiation from two points lying on different sides of him. At the moment ¢ = z one of the
retarded positions of the charge (z;) comes to the origin and the corresponding
bremsstrahlung shock wave reaches the observer. For times ¢ > z the observer sees the

electrostatic field of the charge at rest and the radiation field from the remote retarded
positions z, of the charge.

Let the observer be placed at the point P with z > 1 /4 (Fig.9). There is no field in P
up to a moment ¢ = Vz. At this moment the charge with accompanying it Cherenkov shock
wave arrives at P. After that the observer sees the radiation field from two retarded
positions lying on different sides of P. As time goes, one of the retarded positions (zy)

approaches the origin, while the other (z 4) 80es away. At the moment ¢ = z the observer sees

that charge reaches the origin and detects the shock wave associated with the termination
of the particle motion. After that moment the observer detects the electrostatic field of the
charge which rests at the origin and the radiation field from one remote retarded position
z, of the charge.
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Concluding this section we note the existence of two types of the shock waves. The
bremsstrahlung shock waves associated with the beginning or termination of the charge
motion correspond to the finite jumps of electromagnetic potentials. Therefore, the field
strengths have the 3-type singularities. On the other hand, the Cherenkov shock wave and
the shock wave associated with the charged particle overcoming the light velocity barrier
correspond to infinite jumps of electromagnetic potentials (due to the vanishing of the
denominators R;). Thus, they carry a much stronger singularity.

4. Numerical Results

Numerical results were obtained by solving [6] Eq.(2.10) under the condition ¢’ < ¢.
We cansider at first the typical case corresponding to {t| = 2. '

Accelerated motion

For the first of the treated problems (uniform acceleration of the charge which initially
rests at the origin) the resulting configuration of the shock waves is shown in Fig.10. We

see on it the Cherenkov shock wave C A(ll), the shock wave C L(l) closing the Mach cone and

the sphere C, representing the spherical shock wave arising from the beginning of the
charge motion. It turns out that the surface C L(l) with a high accuracy is approximated by

the part of the sphere p2 +{(z-1/ 4)2 =(t-1/ 2)2 (shown by the short-dash curve C)
which corresponds to the shock wave emitted from the point z=1/4 at the moment
t = 1 /2 when the velocity of the charged particle coincides with the velocity of light in the

medium. On the internal sides of the surfaces CL(I) and CA(JI) electromagnetic potentials
acquire infinite values. On the external side of C A() ) lying outside C, the electromagnetic
potentials are zero (as there are no solutions there). On the external sides of C L(l) and on

the part of the C A(ll) surface lying inside O the electromagnetic potentials have finite values.

1.5 l
’ t=2
1.0 ]
Q c( ]
0.5 ]
0.0l e : |
1.2 22 2 3.2 4.2

Fig.10. The distribution of the shock waves for the uniformly accelerated charge and
t = 2. The short-dash curve C represents the spherical shock wave emitted from the point
z=1/4 at the momentt=1/2
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Decelerated motion

Now we turn to the second
problem (uniform deceleration
of the charged particle along
the positive z semi-axis up to a
moment =0 after which it
rests at the origin). In this case
only negative retarded times t,

have a physical meaning.

For the observation time
t > 0 the resulting configuration
of the shock waves is shown in
Fig.11. We see the bremsstrah-
lung shock wave C, arising from
the termination of the charge
motion and the blunt shock
wave Céz). Its head part with a
high accuracy is described by
the sphere p2 +(z-1/4)7=
=(t+1/2 (shown by the
short-dash curve) correspon-
ding to the shock wave emitted
from the point z=1/4 at the
moment t=-1/2 when the
velocity of the decelerated char-
ged particle coincides with the
velocity of light in the medium.
The electromagnetic potentials

vanish outside CL(Z) (as no solu-

tions exist there) and acquire in-
finite values on the internal part

of CL(Z) (due to vanishing of the
denominators Rl and R2 there).

Therefore, the surface CL(Z) re-
presents the shock wave. As a

5t
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Fig.11. The distribution of the shock waves for the uniformly
decelerated charge and ¢ = 2. The short-dash curve represents the
spherical shock wave emitted from the point z=1/4 at the
moment t =-1/2 :
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Fig.12. The distribution of the shock waves for the uniformly
decelerated charge and ¢t = - 2

result, for t > 0, t’ < 0 one has the shock wave CL(z) and the bremsstrahlung shock wave
C, arising from the termination of the particle motion.

For t < 0, t’ < 0 the physical solutions exist only inside the Mach cone Cl"(lz) (Fig.12).

On its internal boundary the electromagnetic potentials acquire infinite values. On the exter-
nal boundary the electromagnetic potentials are zero (as no solutions exist there). Thus, for
the case of decelerated motion and the observation time 7 = — 2 the physical solutions are

contained inside the Mach cone Cﬁ(lz) (Fig.12).
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5. Discussion

Consider at first the accelerated motion of the charge beginning from the origin at the
moment ¢ = 0. The time evolution of the arising shock waves is shown in Figs.13-15. All
the Mach cones shown in Figs.13-15 exist only for 1 > 1 /2, z > 1 /4. This means that the
observer being placed in the space region with z < 1 /4 will not see either the Cherenkov
shock wave or the shock wave originating from the overcoming the light velocity barrier in
any moment of time. Only the shock wave C, (not shown in Figs.13-16) associated with

the beginning of the charge motion reaches him at the moment c t = r. Moreover, the

detection of the aforementioned shock waves (C IEU and C A(ll Yinthe z> 1 /4 region is pos-

sible if the distance p from the Z axis satisfies the equation

A1y 1
_373_(24 2y

Inside this region the observer sees at first the Cherenkov shock wave C 1\(41)' Later he detects

P<P., P, (5.1)

the bremsstrahlung shock wave C;, and the shock wave C L(l) associated with overcoming the
light velocity barrier. It is remarkable that the surface of the C L(I) shock wave with a high

accuracy coincides with the surface of the sphere 92 +(z-1/ 4y = ci(t -1/ 2)? describing

the spherical wave emitted by the charge from the point z=1/4 at the moment t=1/2
when the charge velocity is equal to ¢ . These spheres are shown by the short-dash curves

in Figs.1\3—15. Outside the region defined by (5.1) the observer sees only the bremsstrah-
lung shock wave C, which reaches him at the moment ¢ t = r. Further, for t < 1/2 only

one retarded solution ) exists. It is confined to the sphere Co of the radius r=ct

0.03 . . 0.10 - .
b Y C—=
C—— \
0.02} t=0.6 < t=0.75
= om 0.05p cy
L cm
0.01}F ¢ M C
0.00 0.00 .
0.34 035 5, 0.36 0.37  0.45 050 7 0.55 0.80

Figs.13,14. The positions of the Cherenkov shock wave C A(,” and the shock wave CL(I) arising from

the charge overcoming of the light velocity barrier for the accelerated charge are shown for the
moment ¢ = 0.6 (Fig.13) and ¢t = 0.75 (Fig.14). Short dash curve C represents the spherical wave
emitted from the point 2 = 1 /4 at the moment ¢ = 1/2 when the accelerated charged particle over-
comes the light velocity barrier
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Fig.15. The same as in Fig.13, but forr=1,1.5and t = 2

Therefore, the observer will not detect either the Cherenkov shock wave or that of origi-
nating from the overcoming light velocity barrier. The dimensions of the Mach cones
shown in Figs.13-15 are zero for ¢ = 1 /2 and continuously rise with time for # > 1 /2. The

physical reason for this behaviour is that CL(I) shock wave closing the Mach cone propa-

gates with the light velocity ¢ , while the head part of the Mach cone (i.e., the Cherenkov

shock wave CA(})) attached to the charged particle expands with the velocity v > C,-

In the gas dynamics the existence of at least two shock waves attached to the finite
body moving with a supersonic velocity was proved on the very general grounds by Landau
and Lifshitz ([10], Chapter 13). In the present context we associate them with lel) and

C]S) shock waves.

For the decelerated motion (see Fig.16) the observer in the space region z < 0 detects
the blunt shock wave CL(Z) first and the bremsstrahlung shock wave C, later. It turns out
that the head part of this blunt wave with a high accuracy coincides with the sphere
p2 +(z-1/ 4)2 =(t+1/ 2)2 describing the spherical wave emitted from the point
z=1/4 at the moment ¢t = — 1 /2 when the charge velocity coincides with c,- The observer
in the z > 1/2 region detects only the Cherenkov shock wave Cﬁ({z).

In order not to hamper the exposition, we did not mention, in this section, the con-
tinuous radiation which reaches the observer between the arrival of two shock waves or
after the arrival of the last shock wave. It is easily restored either from the simplified case
considered in Sec.3 or from Figs.10-12.

However, some precaution is needed. For the motion law (2.4) the charge velocity may
exceed c, the velocity of light in vacuum. Consider first the accelerated motion. The exter-
nal 4-force maintaining the accelerated motion (2.4) becomes infinite (due to the y-factor

y=(01- Bz)" 1/ 2) in it). Therefore, this motion cannot be realized for v close to c. In any
case, the effects arising from the proximity of charge velocity to ¢ do not produce any
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v

-3.0

Fig.16. The continuous transformation of the Cherenkov shock
wave CA(,Z) (1) into the blunt shock wave CL(Z) (9) for the decele-

rated motion. The numbers 1-9 refer to the moments of time
t=-2,-15-1,-05;0,05; 1; 1.5, and 2, resp. Short-dash
curves represent the spherical waves emitted from the point
z=1/4 at the moment ¢ = — 1 /2 when the decelerated charged
particle overcomes the light velocity barrier

discontinuties and will be observed after the arrival of the last of the shock waves conside-
red earlier. The situation is slightly more complicated for the decelerated motion. To escape
the troubles with v > ¢ one may imagine that the charged particle is at rest at the point
2 =-17, up to a moment ¢ = — t,, after which it instantly acquires the velocity c,<v<ec.

After the moment ¢ = — t, the charge moves towards the origin according to a law similar

to (2.4). The radiation field arising from such a velocity jump was studied in [9]. It turns
out that the arising physical picture insignificantly differs from that considered in previous
sections. Let the observation point P lie in the negative Z semi-space. Then, after the arrival

of the C L(2) shock wave, the shock wave C, associated with the beginning of the charge
motion (at ¢t = — t,) arrives at P. For the observation point P in the positive Z semi-space

(more accurately, for z > 1 /4) the shock wave C 1 reaches P after the arrival of the Cheren-
kov shock wave C 1&(!2)' In both cases the C, shock wave closes either the blunt shock wave
C L(2) or the Mach cone C h(12) (likewise the shock wave CL(I) shown in Figs.10-14 closes the
Mach cone Cﬁ(ll)). The singularity of the C ; shock wave is the same as the singularity of

G shock wave and, therefore, is weaker than the singularity either of CyorC,.

So far we have considered the physical effects arising when the velocity of the point-
like charged particle continuously passes through the light-velocity barrier. The electro-
magnetic fields of the uniformly moving charge are well-known both for v>c, and
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v <c, [5738]) But what happens if the particle velocity exactly coincides with the light
velocity in the medium cn? (This question was posed by Prof. Tyapkin). For this case the
equation defining ¢’ is

ct-t)=[p*+@-ct)/2

Solving it relative to ¢’ one gets

1 r2—cit2
Cnt'=~2-——t~
Z—-C,

The nonvanishing components of the electromagnetic potentials are equal to

e@(cnt -2) ec, u@(cnt -2)
- CRET E A clc,t - 2)

As A and @ do not depend on the cylindrical coordinates p and ¢, so B=H = Ep =

=E¢=0and

o @ 1%
27 9z ¢ o’

glc,t - 2) elc,t - 9t coor g(c,t - 2) - ec,t - 22

% ed(c,t — 2) €O(c,t - 2) 1 aAZ ed(c,t - 2) €O(c,t - 2)
oz

It turns out that E and H vanish everywhere except, possibly, the plane z = ct. Init, Ez

reduces to the difference of two infinities and the final answer remains to be undetermined.
However, the integral of E taken over an arbitrary closed surface surrounding the charge
should be equal to 4me. As E is entirely confined to the plane z = b it should be infinte

on this plane (to guarantee the finiteness of the above integral). As a result, the electrq;
magnetic field of the particle moving with the velocity coinciding with the light velocity in
the medium differs from zero only on the plane normal to the axis of motion and passing
through the charge itself. The same ambiguity arises if one takes the formulae describing
the charge motion with v > <, (see, e.g., [9]) and will tend v —> <, in them. We observe that

forv = <, the shock wave coincides with the z = ct plane, i.e., it has an infinite extension.

The same effect takes place in gas dynamics when the velocity of the body coincides with
the velocity of sound ([10], Chapter 12).

6. Conclusion e

To the end, we confirm the qualitative predictions of Refs. 2,3 concerning the exist-
ence of the shock waves arising from the charge overcoming the light velocity barrier
(inside the medium). It would be interesting to observe them experimentally.



26

Afanasiev G.N. et al. Overcoming of the Light Velocity

Acknowledgements

The authors would like to thank Prof. Tyapkin A.A. who attracted their attention to

Ref.3.

oo

10.

References

. Frank .M. — Vavilov—Cherenkov Radiation. Theoretical Aspects, Moscow, Nauka,

1988.

. Tyapkin A.A. — JINR Rapid Communications, 1983, No.3, p.26-31.
. Zrelov V.P., Ruzicka J., Tyapkin A.A. — Pre-Cherenkov Radiation as Manifestation

of the «Light Barrier», to be published in the Collection of Articles dedicated to
P.A.Cherenkov, Moscow, Nauka, 1997 (in Russian).

. Zrelov V.P., Ruzicka J. — Chech. Journal of Physics B, 1989, v.39, p.368.

Krupa L., Ruzicka J., Zrelov V.P. — JINR Preprint P2-95-281, Dubna, 1995.

. Schott G.A. — Electromagnetic Radiation, Cambridge University Press, 1912.
. Van der Waerden B.L. — Algebra, vol.1, Springer-Verlag, Berlin, Heidelberg, New

York, 1971.

. Heaviside O. — Electromagnetic Theory, v.3, London, The Electrician, 1912.
. Sommerfeld A. — Gotting. Nachricht, 1905, p.201.
. Afanasiev G.N., Beshtoev Kh., Stepanovsky Yu.P. — Helv. Phys. Acta, 1996, v.69,

p-111.
Landau L.D., Lifshitz EIM. — Fluid Mechanics, Massachusetts, Addison-Wesley,
Reading, 1962.

Received on November 14, 1996.





